21182 measured reflections

 $R_{\rm int} = 0.030$

6240 independent reflections

4989 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis(1*H*-imidazole- κN^3)(perchlorato- κO)copper(II) perchlorate dimethylamine disolvate

Ying-Xia Zhou,^a Guang-Xia Cheng,^b Ben-Lai Wu^{c*} and Hong-Yun Zhang^c*

^aCollege of Sciences, Henan Agricultural University, Zhengzhou 450052, People's Republic of China, ^bHenan Provincial Machinery and Electric Equipment Tendering Center, Zhengzhou 450052, People's Republic of China, and CDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: wbl@zzu.edu.cn, wzhy917@zzu.edu.cn

Received 26 July 2007; accepted 31 July 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.119; data-to-parameter ratio = 19.0.

The title asymmetric compound, unit of the [Cu(ClO₄)(C₃H₄N₂)₄]ClO₄·2C₂H₇N₂, consists of a cationic tetrakis(1H-imidazole)perchloratocopper(II) complex, two dimethylamine solvent molecules and one perchlorate counter-anion. The coordination geometry of the metal atom is tetragonal-pyramidal, with four imidazole molecules in the basal plane and a perchlorate anion at the apex. The complex cations act as multiple connectors and self-assemble into a one-dimensional hydrogen-bonded ribbon, which is further hydrogen bonded with the perchlorate anion and solvent dimethylamine to form a two-dimensional framework.

Related literature

For related literature, see: Głowiak & Wnęk (1985); Lavalette et al. (2003); Moulton & Zaworotko (2001); Sengupta et al. (2001); Xu et al. (2004).

Experimental

Crystal data

[Cu(ClO₄)(C₃H₄N₂)₄]ClO₄-- $\beta = 125.580 \ (5)^{\circ}$ V = 2585.0 (5) Å³ $2C_2H_7N_2$ Z = 4 $M_r = 624.94$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 16.5302 (17) Å $\mu = 1.11 \text{ mm}^{-1}$ b = 9.2777 (10) ÅT = 273 (2) K c = 20.7248 (15) Å $0.32 \times 0.29 \times 0.25 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.712,\;T_{\rm max}=0.765$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	328 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
6240 reflections	$\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cu1-N3	2.0104 (19)	Cu1-N7	2.0347 (19)
Cu1-N5	2.0151 (19)	Cu1-O1	2.2796 (19)
Cu1-N1	2.0223 (19)		
N3-Cu1-N5	90.64 (8)	N1-Cu1-N7	91.59 (8)
N3-Cu1-N1	87.23 (8)	N3-Cu1-O1	94.99 (8)
N5-Cu1-N1	162.13 (9)	N5-Cu1-O1	87.62 (7)
N3-Cu1-N7	172.14 (8)	N1-Cu1-O1	110.24 (8)
N5-Cu1-N7	88.11 (8)	N7-Cu1-O1	92.71 (7)

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots O4^{i}$	0.88	2.21	3.013 (3)	152
$N4 - H4B \cdot \cdot \cdot O4^{ii}$	0.88	1.94	2.808 (3)	167
N8−H8B···O8 ⁱⁱⁱ	0.88	1.95	2.828 (3)	177
N9−H9B···O5 ⁱⁱⁱ	0.88	2.19	2.693 (3)	116
N9-H9 B ···O6 ^{iv}	0.88	2.33	2.717 (3)	107
N6−H6B···O6	0.88	2.11	2.924 (3)	154
N6−H6B···O8	0.88	2.27	3.001 (3)	140
N10−H10B···O3	0.90	2.13	2.749 (2)	126

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 2; (iii) x, y - 1, z; (iv) -x, -y + 1, -z + 1.

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 1997b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China and the Introduction Talent Foundation of Zhengzhou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2354).

References

- Głowiak, T. & Wnęk, I. (1985). Acta Cryst. C41, 324-327.
- Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349–3354.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Xu, Y., Han, L., Lin, Z. Z., Liu, C. P., Yuan, D. Q., Zhou, Y. F. & Hong, M. C. (2004). *Eur. J. Inorg. Chem.* pp. 4457–4462.

supplementary materials

Acta Cryst. (2007). E63, m2285-m2286 [doi:10.1107/S1600536807037440]

Tetrakis(1*H*-imidazole-*KN*³)(perchlorato-*KO*)copper(II) perchlorate dimethylamine disolvate

Y.-X. Zhou, G.-X. Cheng, B.-L. Wu and H.-Y. Zhang

Comment

In decades, hydrogen bonding with directionality and strength has been widely exploited by crystal engineers to control and tune structure topologies. For example, the carboxylic acid moiety as a graceful supramolecular synthon can be hydrogen bonded into not only discrete aggregates and one-dimensional polymers but also two-dimensional and three-dimensional networks; and calix-*C*-methylresorcin-[4]arenes self-assembled with water molecules held together by hydrogen bonds into a spheroid with a very large enclosed cavity of 1375 Å³ (Moulton & Zaworotko, 2001). Of currently attractive are coordination complexes encoding multiple hydrogen-bonding acceptors and donors embedded in ligands because these supramolecular synthons incorporating stereostructure and H-bond sites can further construct higher-ordered aggregates through H-bond recognitions (Lavalette *et al.*, 2003; Głowiak & Wnęk, 1985). We communicate herein the synthesis and hydrogen-bonded two-dimensional planar sheet constructed by novel one-dimensional hydrogen-bonded ribbons of the title compound, $[Cu(C_3H_4N_2)_4(ClO_4)]^+ (ClO_4)^- \cdot 2(C_2H_7N)$, (I).

In (I), the coordination enviroment of Cu(II) ion is axially elongated tetragonal-pyramidal (Fig. 1 and Table 1). The Cu(II) atom is Penta-coordinated by N₄O with four terminal imidazole molecules arranged almost perpendicular to the Cu—N₄ plane in base [Cu—N, from 2.0104 (19) to 2.0347 (19) Å] and a terminal perchlorate anion at apex [Cu—O, 2.2796 (19) Å]. As clearly shown in Fig. 2, the cation complex is an excellent supramolecular synthon. The four terminal imidazole ligands acting as hydrogen-bonding donors bind two lattice perchlorates and two coordination perchlorates, respectively, while, with the free coordination oxygen O4 as hydrogen-bonding acceptors, the coordination perchlorate anion also connect with two imidazole ligands from different complex ions (Table 2). Thus, the cation complex is a notable six-connector, and self-assembles into a novel one-dimensional hydrogen-bonded ribbon by paired N—H…O hydrogen bonds. With lattice perchlorate being captured at one corner by other paired N—H…O hydrogen bonds, the novel one-dimensional hydrogen-bonded two-dimensional planar sheet in the direction parallel to the (T 0 1) plane (Fig. 3), and pack up in crystals (Fig. 4). Remarkably, through H-bond interactions, dimethylamine molecules which have been determined by single-crystal and elemental analysis inhabit in cavities of the one-dimensional hydrogen-bonded ribbons or ride at the lattice perchlorate. Perhaps, the dimethylamine derived from the decomposition of *N*,*N*-dimethylform-amide in the reaction system (Xu *et al.*, 2004).

Experimental

A solution of imidazole (0.0272 g, 0.4 mmol) and *N*,*N*-dimethylformamide (5 ml) was mixed with a solution of $Cu(ClO_4)_2$ ·6H₂O (0.0371 g, 0.1 mmol) in methanol (15 ml) with sharp stir. Then the mixture was heated for half an hour in water bath at 333 K, which led to a green solution. With the solution slowly evaporating in room temperature for three week, green block crystal appeared. Filtrated, washed with a few drops of methanol and dried naturally, pure title compound of 0.047 g was obtained (yield 75%); Analysis calculated for $C_{16}H_{30}Cl_2CuN_{10}O_8$: C 30.75, H 4.84, N 22.41%. Found: C 30.82, H 4.79, N 22.45%.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.95–0.98 Å, N—H = 0.88–0.90 Å and with $U_{iso} = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. An *ORTEP* representation of the asymmetry unit in the title compound (I), showing tetragonal-pyramidal coordination geometry around metal center Cu(II). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. View of the self-assembly of complex (I) into a novel one-dimensional hydrogen-bonded ribbon by paired N—H \cdots O hydrogen bonds.

Fig. 3. View of a hydrogen-bonded two-dimensional planar sheet extending in the direction parallel to the $(\overline{1} \ 0 \ 1)$ plane.

Fig. 4. Packing diagram of the title compound (I), showing guest dimethylamine molecules inhabited in the cavities (partial hydrogen atoms have been omitted for clarity).

Tetrakis(1*H*-imidazole- κN^3)(perchlorato- κO)copper(II) perchlorate dimethylamine disolvate

 $[Cu(ClO_4)(C_3H_4N_2)_4]ClO_4 \cdot 2C_2H_7N_2$ $M_r = 624.94$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc

Crystal data

 $F_{000} = 1292$ $D_x = 1.606 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6261 reflections

a = 16.5302 (17) Å	$\theta = 2.5 - 27.9^{\circ}$
<i>b</i> = 9.2777 (10) Å	$\mu = 1.11 \text{ mm}^{-1}$
c = 20.7248 (15) Å	T = 273 (2) K
$\beta = 125.580 \ (5)^{\circ}$	Block, green
$V = 2585.0 (5) \text{ Å}^3$	$0.32 \times 0.29 \times 0.25 \text{ mm}$
Z = 4	

Data collection

6240 independent reflections
4989 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\text{max}} = 28.3^{\circ}$
$\theta_{\min} = 2.4^{\circ}$
$h = -22 \rightarrow 21$
$k = -12 \rightarrow 12$
$l = -27 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0615P)^2 + 1.869P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
6240 reflections	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
328 parameters	$\Delta \rho_{min} = -0.87 \text{ e } \text{\AA}^{-3}$
Drimany atom site locations structure inversiont direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.28355 (2)	0.24588 (3)	0.777041 (17)	0.02098 (10)
Cl1	0.52647 (4)	0.21986 (6)	0.92904 (3)	0.02249 (13)
01	0.45053 (13)	0.28852 (19)	0.85304 (10)	0.0293 (4)
N1	0.25032 (16)	0.0965 (2)	0.82932 (12)	0.0243 (4)
C1	0.1562 (2)	0.0424 (3)	0.79480 (16)	0.0311 (5)
H1A	0.0997	0.0647	0.7429	0.037*
Cl2	0.04412 (4)	0.77614 (6)	0.43718 (3)	0.02472 (14)
02	0.51351 (15)	0.2707 (2)	0.99015 (11)	0.0388 (5)
N2	0.25177 (17)	-0.0490 (2)	0.91358 (13)	0.0311 (5)
H2B	0.2736	-0.0988	0.9570	0.037*
C2	0.1568 (2)	-0.0483 (3)	0.84686 (16)	0.0318 (6)
H2C	0.1019	-0.1006	0.8382	0.038*
03	0.51743 (15)	0.06216 (19)	0.92169 (12)	0.0402 (5)
N3	0.25347 (16)	0.3963 (2)	0.83014 (12)	0.0244 (4)
C3	0.30678 (19)	0.0401 (3)	0.90176 (15)	0.0269 (5)
H3B	0.3756	0.0595	0.9396	0.032*
O4	0.62696 (14)	0.26129 (18)	0.95327 (11)	0.0283 (4)
N4	0.26774 (17)	0.5529 (2)	0.91551 (13)	0.0311 (5)
H4B	0.2947	0.6063	0.9584	0.037*
C4	0.3164 (2)	0.4596 (3)	0.89952 (15)	0.0273 (5)
H4C	0.3859	0.4417	0.9332	0.033*
05	0.01465 (19)	0.9259 (2)	0.43397 (19)	0.0682 (8)
N5	0.27036 (15)	0.3940 (2)	0.70031 (11)	0.0225 (4)
C5	0.1696 (2)	0.5503 (3)	0.85361 (16)	0.0343 (6)
H5B	0.1176	0.6056	0.8482	0.041*
O6	0.01920 (16)	0.6908 (3)	0.48374 (13)	0.0492 (6)
N6	0.2068 (2)	0.5493 (2)	0.60361 (13)	0.0435 (6)
H6B	0.1627	0.6045	0.5638	0.052*
C6	0.1612 (2)	0.4522 (3)	0.80090 (16)	0.0321 (6)
H6C	0.1010	0.4266	0.7518	0.039*
07	-0.00792 (18)	0.7188 (3)	0.35769 (13)	0.0571 (7)
N7	0.29348 (15)	0.0923 (2)	0.71186 (12)	0.0235 (4)
C7	0.1884 (2)	0.4609 (3)	0.64449 (15)	0.0326 (6)
H7B	0.1251	0.4481	0.6347	0.039*
08	0.15263 (14)	0.7693 (2)	0.47831 (12)	0.0352 (4)
N8	0.25757 (17)	-0.0565 (2)	0.61590 (12)	0.0316 (5)
H8B	0.2230	-0.1104	0.5731	0.038*
C8	0.3048 (3)	0.5398 (3)	0.63370 (17)	0.0425 (7)
H8C	0.3388	0.5906	0.6164	0.051*
C9	0.3441 (2)	0.4422 (3)	0.69392 (16)	0.0309 (5)
H9A	0.4117	0.4123	0.7263	0.037*
C10	0.38020 (19)	0.0519 (3)	0.72164 (15)	0.0282 (5)
H10A	0.4451	0.0835	0.7631	0.034*
C11	0.3582 (2)	-0.0407 (3)	0.66236 (16)	0.0311 (5)
H11A	0.4040	-0.0853	0.6550	0.037*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.21965 (11)	0.02468 (15)	0.64659 (9)	0.0289 (5)
0.1510	0.0325	0.6251	0.035*
0.42910 (11)	-0.20296 (15)	0.86560 (9)	0.0321 (5)
0.4422	-0.1364	0.9021	0.038*
0.06492 (11)	0.20562 (15)	0.44547 (9)	0.0434 (6)
0.0467	0.1522	0.4701	0.052*
0.1675 (3)	0.2473 (4)	0.4811 (3)	0.0596 (10)
0.2102	0.2075	0.5348	0.089*
0.1727	0.3526	0.4835	0.089*
0.1886	0.2098	0.4488	0.089*
-0.0058 (4)	0.2612 (4)	0.3643 (3)	0.0669 (11)
-0.0733	0.2299	0.3441	0.100*
0.0120	0.2239	0.3298	0.100*
-0.0031	0.3668	0.3650	0.100*
0.3270 (3)	-0.2450 (3)	0.79940 (18)	0.0380 (7)
0.2788	-0.1894	0.8023	0.057*
0.3174	-0.3481	0.8032	0.057*
0.3171	-0.2255	0.7488	0.057*
0.5070 (3)	-0.2820 (4)	0.8665 (2)	0.0578 (9)
0.5726	-0.2499	0.9117	0.087*
0.5004	-0.2632	0.8171	0.087*
0.4997	-0.3856	0.8712	0.087*
	0.21965 (11) 0.1510 0.42910 (11) 0.4422 0.06492 (11) 0.0467 0.1675 (3) 0.2102 0.1727 0.1886 -0.0058 (4) -0.0733 0.0120 -0.0031 0.3270 (3) 0.2788 0.3174 0.3171 0.5070 (3) 0.5726 0.5004 0.4997	0.21965 (11) $0.02468 (15)$ 0.1510 0.0325 $0.42910 (11)$ $-0.20296 (15)$ 0.4422 -0.1364 $0.06492 (11)$ $0.20562 (15)$ 0.0467 0.1522 $0.1675 (3)$ $0.2473 (4)$ 0.2102 0.2075 0.1727 0.3526 0.1886 0.2098 $-0.0058 (4)$ $0.2612 (4)$ -0.0733 0.2299 0.0120 0.2239 -0.0031 0.3668 $0.3270 (3)$ $-0.2450 (3)$ 0.2788 -0.1894 0.3174 -0.3481 0.3171 -0.2225 $0.5070 (3)$ $-0.2820 (4)$ 0.5726 -0.2499 0.5004 -0.2632 0.4997 -0.3856	0.21965 (11)0.02468 (15)0.64659 (9)0.15100.03250.62510.42910 (11)-0.20296 (15)0.86560 (9)0.4422-0.13640.90210.06492 (11)0.20562 (15)0.44547 (9)0.04670.15220.47010.1675 (3)0.2473 (4)0.4811 (3)0.21020.20750.53480.17270.35260.48350.18860.20980.4488-0.0058 (4)0.2612 (4)0.3643 (3)-0.07330.22990.34410.01200.22390.3298-0.00310.36680.36500.3270 (3)-0.2450 (3)0.79940 (18)0.2788-0.18940.80230.3174-0.34810.80320.3171-0.22550.74880.5070 (3)-0.2820 (4)0.8665 (2)0.5726-0.24990.91170.5004-0.26320.81710.4997-0.38560.8712

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03030 (18)	0.01577 (14)	0.02325 (16)	0.00019 (11)	0.01922 (14)	0.00038 (10)
Cl1	0.0205 (3)	0.0258 (3)	0.0189 (3)	-0.0009 (2)	0.0102 (2)	0.0005 (2)
01	0.0261 (10)	0.0329 (9)	0.0209 (8)	0.0013 (7)	0.0091 (8)	0.0040 (7)
N1	0.0319 (11)	0.0206 (9)	0.0251 (10)	-0.0007 (8)	0.0191 (9)	0.0013 (8)
C1	0.0279 (14)	0.0321 (13)	0.0299 (13)	0.0001 (10)	0.0148 (11)	0.0064 (11)
Cl2	0.0223 (3)	0.0272 (3)	0.0228 (3)	-0.0005 (2)	0.0120 (2)	0.0007 (2)
02	0.0337 (11)	0.0634 (14)	0.0236 (9)	0.0114 (9)	0.0192 (9)	0.0030 (8)
N2	0.0388 (13)	0.0302 (11)	0.0302 (11)	0.0049 (9)	0.0234 (10)	0.0096 (9)
C2	0.0299 (14)	0.0314 (13)	0.0374 (14)	-0.0029 (11)	0.0216 (12)	0.0051 (11)
03	0.0384 (12)	0.0222 (9)	0.0433 (11)	-0.0062 (8)	0.0143 (10)	0.0013 (8)
N3	0.0310 (11)	0.0200 (9)	0.0267 (10)	-0.0010 (8)	0.0194 (9)	-0.0029 (8)
C3	0.0291 (13)	0.0264 (12)	0.0272 (12)	-0.0006 (10)	0.0176 (11)	0.0005 (10)
O4	0.0224 (9)	0.0373 (10)	0.0257 (9)	-0.0079 (7)	0.0143 (8)	-0.0061 (7)
N4	0.0393 (13)	0.0277 (11)	0.0267 (10)	-0.0026 (9)	0.0193 (10)	-0.0092 (9)
C4	0.0301 (13)	0.0245 (11)	0.0268 (12)	-0.0008 (10)	0.0162 (11)	-0.0017 (9)
05	0.0570 (16)	0.0278 (11)	0.129 (2)	0.0085 (10)	0.0591 (18)	0.0038 (13)
N5	0.0247 (11)	0.0199 (9)	0.0231 (9)	0.0013 (8)	0.0140 (9)	0.0025 (7)
C5	0.0332 (15)	0.0359 (14)	0.0361 (14)	0.0015 (11)	0.0215 (13)	-0.0085 (12)
O6	0.0421 (13)	0.0645 (14)	0.0445 (12)	-0.0002 (11)	0.0272 (11)	0.0217 (11)
N6	0.0555 (17)	0.0292 (12)	0.0263 (11)	0.0066 (11)	0.0126 (12)	0.0112 (9)
C6	0.0294 (14)	0.0361 (14)	0.0311 (13)	-0.0024 (11)	0.0178 (12)	-0.0101 (11)
07	0.0407 (14)	0.0908 (19)	0.0264 (11)	-0.0196 (12)	0.0119 (10)	-0.0220 (11)

supplementary materials

N7	0.0296 (11)	0.0200 (9)	0.0246 (10)	0.0004 (8)	0.0178 (9)	-0.0011 (8)
C7	0.0286 (14)	0.0286 (12)	0.0291 (13)	0.0034 (10)	0.0102 (11)	0.0003 (10)
08	0.0199 (10)	0.0517 (12)	0.0274 (9)	0.0010 (8)	0.0099 (8)	0.0011 (8)
N8	0.0403 (13)	0.0263 (11)	0.0245 (10)	-0.0054 (9)	0.0168 (10)	-0.0074 (8)
C8	0.064 (2)	0.0360 (15)	0.0364 (15)	-0.0126 (14)	0.0343 (16)	0.0014 (12)
С9	0.0320 (14)	0.0340 (13)	0.0323 (13)	-0.0027 (11)	0.0219 (12)	0.0036 (11)
C10	0.0285 (13)	0.0300 (12)	0.0281 (12)	-0.0045 (10)	0.0177 (11)	-0.0077 (10)
C11	0.0334 (14)	0.0318 (13)	0.0319 (13)	0.0001 (11)	0.0212 (12)	-0.0067 (11)
C12	0.0304 (14)	0.0259 (12)	0.0280 (12)	-0.0013 (10)	0.0157 (11)	-0.0009 (10)
N10	0.0443 (14)	0.0265 (10)	0.0293 (11)	-0.0029 (10)	0.0237 (11)	-0.0048 (9)
N9	0.0523 (17)	0.0352 (12)	0.0491 (15)	-0.0021 (12)	0.0331 (14)	0.0038 (11)
C13	0.064 (3)	0.054 (2)	0.064 (3)	-0.0127 (17)	0.040 (2)	-0.0039 (17)
C14	0.073 (3)	0.071 (3)	0.057 (2)	0.008 (2)	0.037 (2)	0.0065 (18)
C15	0.0472 (19)	0.0309 (14)	0.0317 (14)	-0.0038 (12)	0.0206 (14)	-0.0025 (11)
C16	0.061 (2)	0.064 (2)	0.064 (2)	0.0081 (18)	0.045 (2)	-0.0023 (18)

Geometric parameters (Å, °)

Cu1—N3	2.0104 (19)	N6—H6B	0.8800
Cu1—N5	2.0151 (19)	С6—Н6С	0.9500
Cu1—N1	2.0223 (19)	N7—C12	1.339 (2)
Cu1—N7	2.0347 (19)	N7—C10	1.378 (3)
Cu1—O1	2.2796 (19)	С7—Н7В	0.9500
Cl1—O3	1.4695 (19)	N8—C12	1.352 (3)
Cl1—O1	1.4702 (18)	N8—C11	1.361 (4)
Cl1—O2	1.4794 (19)	N8—H8B	0.8800
Cl1—O4	1.4794 (18)	C8—C9	1.362 (4)
N1—C3	1.330 (3)	C8—H8C	0.9500
N1—C1	1.375 (3)	С9—Н9А	0.9500
C1—C2	1.363 (3)	C10—C11	1.363 (3)
C1—H1A	0.9500	C10—H10A	0.9500
Cl2—O7	1.445 (2)	C11—H11A	0.9500
Cl2—O5	1.461 (2)	C12—H12A	0.9500
Cl2—O8	1.473 (2)	N10-C16	1.472 (4)
Cl2—O6	1.480 (2)	N10-C15	1.480 (4)
N2—C3	1.352 (3)	N10—H10B	0.9000
N2—C2	1.360 (4)	N9—C13	1.454 (4)
N2—H2B	0.8800	N9—C14	1.475 (4)
C2—H2C	0.9500	N9—H9B	0.8800
N3—C4	1.324 (3)	С13—Н13А	0.9800
N3—C6	1.374 (3)	С13—Н13В	0.9800
С3—Н3В	0.9500	C13—H13C	0.9800
N4—C4	1.348 (3)	C14—H14A	0.9800
N4—C5	1.362 (4)	C14—H14B	0.9800
N4—H4B	0.8800	C14—H14C	0.9800
C4—H4C	0.9500	C15—H15A	0.9800
N5—C7	1.317 (3)	C15—H15B	0.9800
N5—C9	1.375 (3)	C15—H15C	0.9800
C5—C6	1.365 (3)	C16—H16A	0.9800

С5—Н5В	0.9500	C16—H16B	0.9800
N6—C7	1.335 (4)	C16—H16C	0.9800
N6—C8	1.359 (4)		
N3—Cu1—N5	90.64 (8)	С5—С6—Н6С	125.4
N3—Cu1—N1	87.23 (8)	N3—C6—H6C	125.4
N5—Cu1—N1	162.13 (9)	C12—N7—C10	106.26 (17)
N3—Cu1—N7	172.14 (8)	C12—N7—Cu1	128.37 (14)
N5—Cu1—N7	88.11 (8)	C10—N7—Cu1	124.88 (16)
N1—Cu1—N7	91.59 (8)	N5—C7—N6	110.4 (2)
N3—Cu1—O1	94.99 (8)	N5—C7—H7B	124.8
N5—Cu1—O1	87.62 (7)	N6—C7—H7B	124.8
N1—Cu1—O1	110.24 (8)	C12—N8—C11	108.51 (19)
N7—Cu1—O1	92.71 (7)	C12—N8—H8B	125.7
O3—Cl1—O1	110.39 (11)	C11—N8—H8B	125.7
O3—Cl1—O2	110.46 (12)	N6—C8—C9	105.6 (2)
01-Cl1-02	108.68 (11)	N6—C8—H8C	127.2
O3—Cl1—O4	108.68 (11)	С9—С8—Н8С	127.2
01-C11-04	109.96 (11)	C8—C9—N5	109.1 (3)
02—Cl1—O4	108.65 (11)	С8—С9—Н9А	125.4
Cl1—O1—Cu1	126 93 (11)	N5-C9-H9A	125.4
C3 = N1 = C1	106 4 (2)	C11 - C10 - N7	109 2 (2)
C3 = N1 = Cu1	130.05(18)	C11—C10—H10A	125.4
C1-N1-Cu1	123 33 (16)	N7-C10-H10A	125.4
C2-C1-N1	109 2 (2)	N8-C11-C10	106 3 (2)
C^2 — C^1 — H^1A	125.4	N8-C11-H11A	126.8
N1—C1—H1A	125.4	C10-C11-H11A	126.8
07-C12-05	109 68 (17)	N7-C12-N8	109.67 (16)
07-012-08	111 14 (13)	N7-C12-H12A	105.07 (10)
05 - C12 - 08	109 20 (13)	N8-C12-H12A	125.2
07-012-06	109.84 (15)	C16 - N10 - C15	123.2 113.4(2)
05-012-06	109.05 (15)	C16 - N10 - H10B	123.4
08-012-06	107.88 (12)	C15—N10—H10B	123.4
C_{3} N2 C2	107.86(12) 108.2(2)	C13 = N9 = C14	123.2 113.7(3)
$C_3 = N_2 = C_2$	106.2 (2)	C13 = N0 = H0R	123.1
$C_2 N_2 H_2 B$	125.9	C14 N0 H0R	123.1
$N_2 = C_2 = C_1$	125.9	NO C13 H13A	123.1
$N_2 = C_2 = C_1$	100.5 (2)	N0 C12 H12P	109.5
$N_2 = C_2 = H_2 C_1$	120.9	H12A C12 H12D	109.5
$C_1 = C_2 = H_2 C_1$	120.9		109.5
C4 = N3 = C6	100.5(2)	N9-C13-H13C	109.5
C4 = N3 = Cu1	127.00(17) 125.92(17)	H12D C12 H12C	109.5
CO = NS = CUI	125.85(17)	HI3B-CI3-HI3C	109.5
$N1 = C_3 = N_2$	109.9 (2)	N9-C14-H14A	109.5
N2 C2 H2D	125.0	$N9 - C14 - \Pi14D$	109.5
$N_2 - C_3 - H_3 B$	125.0	H14A - C14 - H14B	109.5
$C_4 = N_4 = U_3$	100.1 (2)	119 - C14 - H14C	109.5
C_4 H_4	123.9	$\Pi 14A - U 14 - \Pi 14U$	109.5
U_{J} H_{H4B}	123.9	$\Pi 14D - U14 - \Pi 14U$	109.5
N3-C4-N4	110.4 (2)	NIU-CIS-HISA	109.5
N3-C4-H4C	124.8	N10-C15-H15B	109.5

supplementary materials

NA CA HAC	124.9	U15A C15 U15D	100.5
N4 - C4 - H4C	124.8	N10 C15 U15C	109.5
C7 = N5 = Cy1	100.2(2) 126.72(18)		109.5
$C = N_{\rm s} = C = 1$	120.73(18)		109.5
C_{9} NA C_{5} C_{4}	127.08(17)		109.5
N4-C5-C6	106.1 (2)		109.5
N4—C5—H5B	127.0		109.5
С6—С5—Н5В	127.0	H16A—C16—H16B	109.5
C/—N6—C8	108.7 (2)	N10—C16—H16C	109.5
C7—N6—H6B	125.7	H16A—C16—H16C	109.5
C8—N6—H6B	125.7	H16B—C16—H16C	109.5
C5—C6—N3	109.2 (2)		
O3—Cl1—O1—Cu1	51.84 (16)	N1—Cu1—N5—C7	15.6 (4)
O2—Cl1—O1—Cu1	-69.45 (16)	N7—Cu1—N5—C7	104.9 (2)
O4—Cl1—O1—Cu1	171.74 (11)	O1—Cu1—N5—C7	-162.3 (2)
N3—Cu1—O1—Cl1	89.35 (14)	N3—Cu1—N5—C9	114.8 (2)
N5—Cu1—O1—Cl1	179.78 (14)	N1—Cu1—N5—C9	-162.2 (2)
N1—Cu1—O1—Cl1	0.47 (16)	N7—Cu1—N5—C9	-72.9 (2)
N7—Cu1—O1—Cl1	-92.23 (14)	O1—Cu1—N5—C9	19.9 (2)
N3—Cu1—N1—C3	-84.1 (2)	C4—N4—C5—C6	0.5 (3)
N5—Cu1—N1—C3	-167.5 (2)	N4—C5—C6—N3	-0.5 (3)
N7—Cu1—N1—C3	103.7 (2)	C4—N3—C6—C5	0.2 (3)
O1—Cu1—N1—C3	10.3 (2)	Cu1—N3—C6—C5	179.30 (18)
N3—Cu1—N1—C1	89.9 (2)	N5—Cu1—N7—C12	-84.60 (17)
N5—Cu1—N1—C1	6.5 (4)	N1—Cu1—N7—C12	77.53 (18)
N7—Cu1—N1—C1	-82.3 (2)	O1—Cu1—N7—C12	-172.12 (17)
O1—Cu1—N1—C1	-175.75 (18)	N5—Cu1—N7—C10	86.23 (19)
C3—N1—C1—C2	-0.7 (3)	N1—Cu1—N7—C10	-111.65 (19)
Cu1—N1—C1—C2	-175.89 (17)	01—Cu1—N7—C10	-1.30 (19)
$C_{3} = N_{2} = C_{2} = C_{1}$	0.2.(3)	C9 - N5 - C7 - N6	-0.3(3)
N1 - C1 - C2 - N2	0.2(3)	Cu1 - N5 - C7 - N6	-17851(17)
N5-Cu1-N3-C4	-1050(2)	C8 - N6 - C7 - N5	01(3)
N1— $Cu1$ — $N3$ — $C4$	92.8 (2)	C7 - N6 - C8 - C9	0.1(3)
01— $Cu1$ — $N3$ — $C4$	-173(2)	N6-C8-C9-N5	-0.3(3)
N_5 — C_{11} — N_3 — C_6	761(2)	C7 - N5 - C9 - C8	0.4(3)
$N_1 = C_1 = N_3 = C_6$	-86 1 (2)	$C_{11} = N5 = C9 = C8$	17857(18)
$\Omega_1 - \Omega_1 - N_3 - C_6$	163.8 (2)	C12 - N7 - C10 - C11	-0.3(3)
C1 = N1 = C3 = N2	0.8(3)	C_{11} N7 C_{10} C_{11}	-172.86(17)
Cu1-N1-C3-N2	175 60 (16)	C12 - N8 - C11 - C10	-0.1(3)
$C_2 = N_2 = C_3 = N_1$	-0.7(3)	N7 - C10 - C11 - N8	0.1(3)
$C_2 = N_2 = C_3 = N_1$	0.7(3)	10 - 10 - 11 - 10	0.3(3)
$C_{11} N_{3} C_{4} N_{4}$	-178 94 (16)	C_{11} N7_ C_{12} N8	(2) (2) (17) (17) (17)
$C_{1} = N_{2} = C_{1} = N_{1}$	-0.4(3)	$C_{11} = N_{12} = N_{0}$	-0.1(2)
$N_{3} = C_{11} = N_{5} = C_{7}$	-673(2)	C11 -100-C12-IV/	0.1 (2)
115 Cui—115—C/	07.5 (2)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
N2—H2B····O4 ⁱ	0.88	2.21	3.013 (3)	152

N4—H4B…O4 ⁱⁱ	0.88	1.94	2.808 (3)	167
N8—H8B…O8 ⁱⁱⁱ	0.88	1.95	2.828 (3)	177
N9—H9B…O5 ⁱⁱⁱ	0.88	2.19	2.693 (3)	116
N9—H9B····O6 ^{iv}	0.88	2.33	2.717 (3)	107
N6—H6B…O6	0.88	2.11	2.924 (3)	154
N6—H6B…O8	0.88	2.27	3.001 (3)	140
N10—H10B…O3	0.90	2.13	2.749 (2)	126

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z; (iv) -x, -y+1, -z+1.

Fig. 2

